

Horizon2020 case studies on wastewater treatment technologies in the Mediterranean

Dr Simos Malamis National Technical University of Athens National Conference on Investment in Water Technologies Cairo 10/9/2018

Ongoing Horizon2020 Can Horizon2020 projects lead to the development of novel and marketable technologies for wastewater treatment in the Mediterranean?

Our H2020 Projects SMART-PLANT

HYDROUSA

INTCATCH

C-FOOT-CTRL

Activities

- Retrofitting and upgrading existing wastewater treatment plants to recover resources from wastewater and promote energy efficiency
- Recovering non-conventional water sources by applying low cost and natured based solutions in water scarce decentralized areas
- Innovative water monitoring technologies Treatment of combined sewer outflows (CSOs)
- Online monitoring of greenhouse gas emissions in **WWTPs**

HYDROUSA Circular Approach

776643

HYDROUSA Project

Rainwater С С ategori Groundwater Wastewater Water Water vapour Seawater

Harvesting Recharge & storage UASB & wetlands S Vapour condensation

- Demonstrate the feasibility of innovative, nature based technologies to recover and preserve valuable materials and energy from different types of water Demonstrate innovative supply chain within the concept of the circular economy
- Decrease water acquisition cost

- Tropical greenhouse
- w Water for 님 domestic use o o Irrigation water Pertigation liquid Biogas Water for reuse 8 Drinking water
- Lirrigation water Salt

Service water & oroducts Drinking water Mediterranean crops Plant-based products Methane gas Marketed Service water Drinking water Tropical fruits

776643

 Applicability in coastal areas and in islands, particularly suitable for medium-small and decentralized regions Integrating within the supply chain

Edible salt

citizen and farmer based activities Promote novel agricultural practices and precision irrigation within the water-food-energy nexus

HYDROUSA **DEMOSTRATION SITES**

Site	Scheme	Specification	Issue Solved under grant agr 776643
HYDRO1, Lesvos		Integrated UASB-wetland Anaerobic treatment & sludge composting, water reuse, biogas production	No wastewater discharge in the s cheaper production of reclaimed water; increasing water supply; recycling nutrients
HYDRO2, Lesvos		Irrigation of agroforestry system with nutrient-rich reclaimed water	Wastewater use for fertigation; no fertilizer import; product diversity; creating resilient ecosystems
HYDRO3, Mykonos		Remote rainwater harvesting system and irrigation of oregano	Cheap water supply in remote are create business case with little inp
HYDRO4, Mykonos		Domestic rainwater harvesting, aquifer storage and watering of local crops	Increase water supply; production drinking water; aquifer recharge to reduce saltwater intrusion
HYDRO5, Tinos		Seawater and brine treatment to recover salt and water, produce tropical fruits	Produce sweet water from saltwater/brine; decrease import of tropical fruits; salt production
HYDRO6, Tinos		Water loops in eco-tourist facility	Ecotourist facilities which are self sufficient in terms of water, energ and food production

Treatment for high rate anaerobic technology

funding from

Invented the UASB technology for the treatment of wastewater

FUTURIJ

UASB

METland

SMART-Plant Project

Using immobilized microorganisms in full-scale anaerobic systems

Demo-scale plants

25 m³/d

Karmiel WWTP

150-200 m³/d Demo-scale

\$+15% more biogas
\$
\$-10% less sludge

Conventional WWTP scheme

Side Stream Treatment of Sludge

Implementation of full scale S.C.E.N.A. system

VFAs STORAGE

Carbonera WWT Italy

Flowrate [m3/d]	35 -
N load [kgN/d]	35 -
P load [kgP/d]	1 -

\$5-6 kWh/kgNrem
 \$80% TN removed
 \$70% TP removed

OEYDAP

Psyttalia WWTP, Greece

Implementation of S.C.E.N.A. system

♦>80% TN removed ✤ >90% NH4-N removed

2009-2015: Several pilot scale implementations at real environment

- •

Cellvation cellulose recovery, CirTec

2016-2020: Development and optimization of demo with capacity of 80 m³/h producting approx 300 kg/d cellulose

Create a constant stream of re-used cellulose, by a validated process • Validated application of sustainable re-use Develop other applications (bio-composites, insulation material

INTCATCH - Development and application of Novel, Integrated Tools for monitoring and managing Catchments

Natural Flood Management

Brunel University London

Presentation Title

C-FOOT-CTRL

Developing on line tools to monitor, control and mitigate GHG emissions in WWTPs

UNGENGEN

N20

TV

- **Calibration free**
- **No calibration gases**
- **Fully automatic**

N2O, CH4

Effluent

N20

https://www.hydrousa.org

Thank you

https://web.facebook.com/Hydrousa/

https://www.linkedin.com/company/hydrousa/

@HydrousaProject

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776643

